Self-organizing maps for storage and transfer of knowledge in reinforcement learning
نویسندگان
چکیده
منابع مشابه
using game theory techniques in self-organizing maps training
شبکه خود سازمانده پرکاربردترین شبکه عصبی برای انجام خوشه بندی و کوانتیزه نمودن برداری است. از زمان معرفی این شبکه تاکنون، از این روش در مسائل مختلف در حوزه های گوناگون استفاده و توسعه ها و بهبودهای متعددی برای آن ارائه شده است. شبکه خودسازمانده از تعدادی سلول برای تخمین تابع توزیع الگوهای ورودی در فضای چندبعدی استفاده می کند. احتمال وجود سلول مرده مشکلی اساسی در الگوریتم شبکه خودسازمانده به حسا...
Hierarchical Functional Concepts for Knowledge Transfer among Reinforcement Learning Agents
This article introduces the notions of functional space and concept as a way of knowledge representation and abstraction for Reinforcement Learning agents. These definitions are used as a tool of knowledge transfer among agents. The agents are assumed to be heterogeneous; they have different state spaces but share a same dynamic, reward and action space. In other words, the agents are assumed t...
متن کاملAnalysis of a Reinforcement Learning algorithm using Self-Organizing Maps
Abstract. The scenario of this work is defined by the need of many Machine Learning algorithms to tune a number of parameters that define its behavior; the resulting performance can be evaluated with different indices. The relationship between parameters and performance may be neither linear nor straightforward. This work proposes a qualitative approach to the afore-mentioned relationship by us...
متن کاملSelf-organizing Developmental Reinforcement Learning
This paper presents a developmental reinforcement learning framework aimed at exploring rich, complex and large sensorimotor spaces. The core of this architecture is made of a function approximator based on a Dynamic Self-Organizing Map (DSOM). The life-long online learning property of the DSOM allows us to take a developmental approach to learning a robotic task: the perception and motor skill...
متن کاملSelf-organizing Neural Architecture for Reinforcement Learning
Self-organizing neural networks are typically associated with unsupervised learning. This paper presents a self-organizing neural architecture, known as TD-FALCON, that learns cognitive codes across multi-modal pattern spaces, involving states, actions, and rewards, and is capable of adapting and functioning in a dynamic environment with external evaluative feedback signals. We present a case s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Adaptive Behavior
سال: 2018
ISSN: 1059-7123,1741-2633
DOI: 10.1177/1059712318818568